

Capacity building planning on digital transformation of the water sector

Presentation of capacity building way forward

Dr. Georg Petersen HYDROC GmbH

Capacity building is driven by the Mediterranean water challenge

- The Mediterranean region faces significant water challenges, exacerbated by climate change, population growth and aging infrastructure.
- Water scarcity affects over **180 million people**, with an additional 60 million experiencing water stress.
- Traditional water management approaches are no longer sufficient to address these complex issues.

-> Need to improve management

The promise of digital transformation

Digital technologies offer transformative potential for the water sector, enabling real-time monitoring, data-driven decision-making, and improved efficiency.

From smart meters to AI-powered analytics, these innovations can lead to more resilient and sustainable water systems.

However, a significant "**digital readiness**" gap exists across UfM member states,.

-> Targeted /dedicated capacity building needed

Key stakeholder groups: national agencies and regulators

Role: Ministries of water/irrigation, regulatory authorities, and basin agencies responsible for national water policy and investment.

Specific needs:

- Capacity in digitalization strategy and governance (e.g., integrating digital transformation into national water plans, establishing legal frameworks, securing funding).
- Exposure to best practices in drafting digital water policies, data standards, and procurement of smart systems.
- Inter-agency coordination skills, bridging water, energy, IT, and finance sectors.
- Country readiness varies significantly, from comprehensive digital water plans in some nations to others just beginning policy formulation.

Key stakeholder groups: water utilities and service providers

Role: Urban water supply and sanitation utilities, irrigation boards, and operators at national or municipal levels, at the forefront of digital tool implementation.

Specific needs:

- Technical skills to identify, implement, and manage digital technologies (e.g., smart meters, AI GIS analysis, machine learning analytics).
- Data analysis and management, turning sensor data into actionable insights, and utilizing public global remote opportunities.
- IT/OT integration, maintenance of digital equipment, and cybersecurity practices for critical infrastructure.
- Training on financial planning for digital infrastructure (e.g., PPPs) and ensuring management commitment.

Key stakeholder groups: academic and research institutions

Role: Universities, technical institutes, and water research centers, crucial for long-term capacity and advising governments on innovation.

Specific needs:

- Support to update curricula and research agendas with the latest digital water trends (e.g., machine learning, AI for water management, integrated water information systems).
- Training-of-trainers to enable professors to deliver new digital water modules.
- Exposure to industry case studies and partnership opportunities with utilities for applied research.
- Engaging academia ensures a multiplier effect, cascading knowledge to students and sparking further research and innovation.

Training matrix:

(citizen science) and feedback to utilities

National

NGOs

Stakeholder **Key training topics Preferred delivery modalities** group – Digital water policy and strategy development (integrating ICT, AI, and data analytics into Regional policy workshops and seminars for sharing country agencies and water plans) experiences regulators - Governance frameworks and institutional reform for digital (data sharing policies, - Executive leadership briefings and high-level panels to build regulatory standards, ethical AI use) awareness (possibly alongside UfM meetings) Project planning and financing for digital investments (business cases, PPP models, - Online webinars on specific policy topics (e.g. Al, accountability, financing for AI and digital infrastructure) data privacy laws, interoperability standards) through the CoP platform Change management and stakeholder engagement (leading a digital transition nationally) Oversight of AI-based decision-support tools and national cloud-based water platforms Water utilities - Technical training on digital tools: SCADA systems, IoT sensors, AI GIS and remote sensing, - Online workshops and training-of-trainers modules. - On-site expert mission and operators smart metering (urban utilities, - Data analytics and management: database systems, real-time monitoring dashboards irrigation - Operations and maintenance in a digital age: asset management systems, predictive authorities) maintenance techniques - Customer service and communication: digital billing, using mobile apps and GIS for customer engagement, feedback loops. Leak detection with AI-based analysis and use of public datasets to simulate hydrological models Academia and Curriculum development in digital water (integrating topics like IoT, AI, hydro-informatics) - Train-the-trainer workshops: intensive courses for professors and research into university courses) trainers to learn new content and pedagogical techniques. institutions Research methodologies for digital water (data collection protocols, modeling techniques, - Webinars and lecture series: delivered by the consultant on interdisciplinary research design combining IT and water engineering) specialized topics, made available to academia through the CoP. Knowledge of industry best practices: case studies of successful digital implementations, - Publication and case study development: mentoring academic current and emerging technologies (e.g. digital twins, blockchain in water) participants to publish case studies or papers on digital transformation experiences in their country (building regional knowledge base). **Civil society and** Digital literacy in water context: understanding basic concepts (e.g. what is a sensor, how - Awareness workshops: community-oriented training events, possibly data is used in water management) country-level or sub-regional. - Advocacy and transparency: how digital platforms (open data portals, dashboards) can - Peer networking: connect NGOs across countries through the CoP so improve transparency of water services, and how to advocate for data access they can share strategies (e.g. how one NGO in Country A used an - Participatory monitoring: methods for communities to be involved in data collection open data portal to hold utilities accountable, etc.).

Multi-year capacity building roadmap: overview

- A phased approach to implement the strategy in an organized and sustainable manner.
- June 2025 December 2026
- Each year has specific themes, milestones, and activities, ensuring logical progression from foundational understanding to advanced application.

Phase 1: Jun – Dec 2025

Initiation and foundations: "Building Awareness and Baseline Capacities"

Focus: Laying the groundwork for next-generation digital capacity, emphasizing AI, cloud-based platforms, and real-time data systems. Launch of the Community of Practice.

Proposed activities:

- Kick-off regional workshop: Introducing the program, showcasing AI/IoT/ML benefits, and validating country priority topics.
- Identify the capacity needs of each country
- Organize a series of online training sessions tailored on the needs identified.

Foundational training modules:

- Introduction to water data management, IoT principles, AI in water resources. Delivered through regional workshops.
- Piloting one mutual learning exchange review study with a water utility: developing methodology, concept note, managing a learning exchange team, national workshop, and drafting report.

Outputs for Phase 1

- Training materials for foundational modules developed.
- List of trained personnel per country established.
- Community of Practice (CoP) platform operational with initial membership and content.
- Pilot project plan document prepared.

Phase 2: Jan – Dec 2026

Knowledge consolidation: "Institutionalization and Scaling Up"

Focus: Consolidating gains, evaluating impact, and ensuring sustainability through institutional integration and planning for scale-up.

Proposed activities:

- Refresher and gap-filling training sessions: addressing any identified gaps through webinars by experienced countries.
- Institutional embedding: supporting national agencies to integrate ongoing capacity building (e.g., establishing Digital Water Units). Enabling early trainees to become trainers.
- Pilot evaluation and replication plan: Reviewing pilot results, assessing impact, and developing a roadmap for replication in other contexts.

Outputs for Phase 2

- Advanced training course modules and manuals developed.
- Mutual learning exchange results
- Conference proceedings documenting best practices exchanged.

Core curriculum modules

Module A: Foundations of digital water systems (sensors, SCADA, telemetry, realtime data, data backbone for AI/ML).

Module B: AI-driven analytics and decision support (cloud databases, GIS, openaccess platforms like Google Earth Engine for hydrological analysis).

Module C: Strategic digital governance and policy (institutional readiness, digital water strategies, legal frameworks, financing, change management, regulatory reforms for AI).

Module D: Emerging technologies for the water sector (digital twins, AI-powered leak detection, computer vision, smart irrigation, blockchain, cost reduction, resilience).

Module E: Operations, maintenance, and cybersecurity in the digital era (predictive maintenance, digital asset management, field digitization, cybersecurity threats, data protection).

Module F: Case studies and practical applications (real-world examples, scenariobased simulations, reviewing successful implementations like PipePredict, FIDO Tech, GEE).

Monitoring and evaluation framework

A robust M&E framework ensures effectiveness and adaptive management.

Basic monitoring data: Participant statistics (country, gender, stakeholder type), training duration, material covered. Input indicators like "Number of professionals trained" with yearly targets. CoP platform usage monitoring (active users, knowledge products shared).

Evaluation forms and assessments: Post-activity evaluations, pre- and posttraining self-assessments or quizzes to measure knowledge improvement (e.g., SCADA understanding).

Key Performance Indicators (KPIs): Development of SMART KPIs to measure outcomes and impact of capacity building initiatives for digital water transformation.

Q&A

Union for the Mediterranean Union pour la Méditerranée الاتحاد من أجل المتوسط

Thank You!

HYDROC GmbH Kappelner St 18, 24975 Husby, Germany Managing Director: Dr. Georg Petersen www.hydroc.de