

INTERNATIONAL ROUNDTABLE TRANSBOUNDARY WATER RESOURCES MANAGEMENT IN THE SOUTHERN MEDITERRANEAN

26 - 27 November 2012, Chamber of Deputies, Rome, Italy

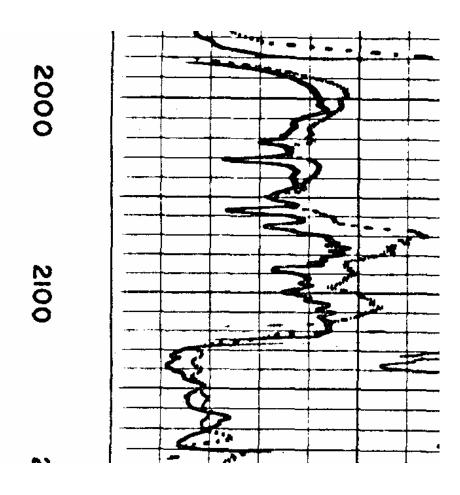
The Necessity of developing a global transboundary groundwater framework: Examples from the Southern Mediterranean

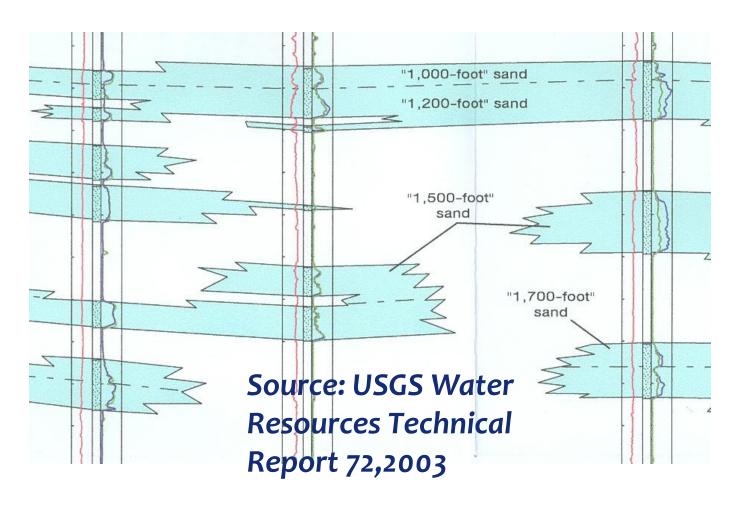
by
Mohamed Elrawady
Regional Water Resources Specialist
Centre for Environment & Development for the Arab Region &
Europe (CEDARE)

Within the framework of UNECE Water Convention

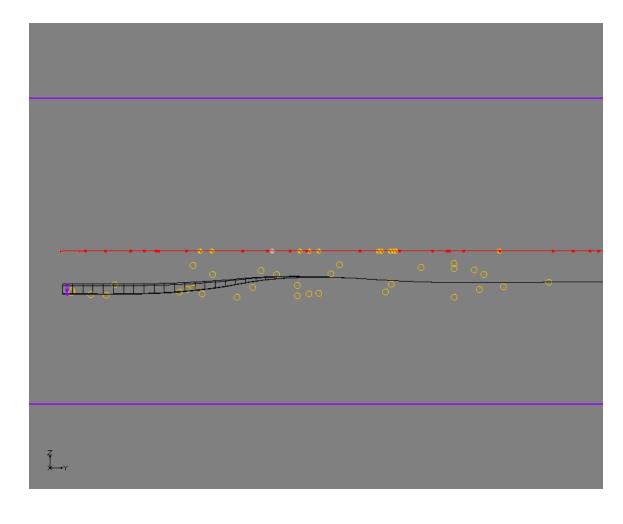
Union for the Mediterranean

GEF IW:LEARN, Activity D2




Introduction

- 1997 UN Convention doesn't entirely cover groundwater. It is still a surface water convention, as it covers groundwater only in connection to surface water, that doesn't cover non-renewable groundwater for example.
- Groundwater Assessment is associated with more uncertainty compared to surface water.


GW Uncertainty: Stratigraphy

GW uncertainty: Horizontal extent

GW Uncertainty: Aquifer thickness

GW Uncertainty: Aquifer parameters

```
Transmissivity(T)= K*b (general form)
```

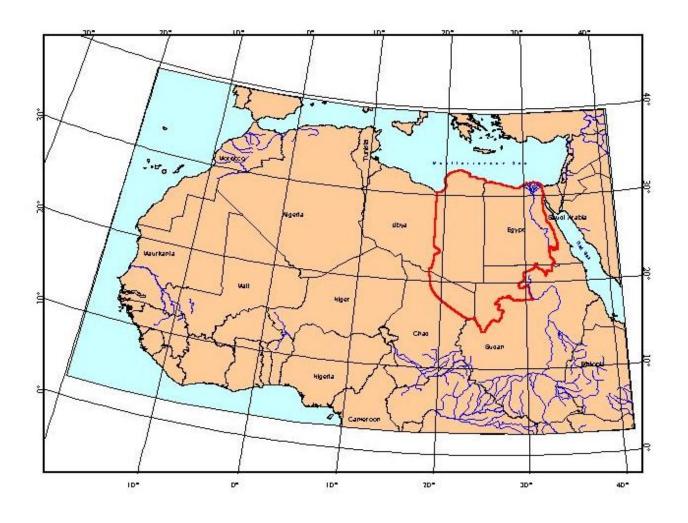
```
T=K(x)*b(x) (heterogenous soil)
T=K*b(x) (homogenous soil)
Where K is the saturated Hydraulic Conductivity, b is the thickness of confined aquifer.
There is a lot of uncertainty associated with T, as both K and b has high uncertainty.
```

GW Uncertainty: Aquifer parameters

Material	K(cm/s)
Gravel	$10^{-1} - 10^2$
Sand	$10^{-3} - 10^{0}$
Silty sand	10 ⁻⁵ - 10 ⁻²
Silt, loess	$10^{-7} - 10^{-4}$
Clay	10 ⁻⁹ - 10 ⁻⁶

GW Uncertainty: Aquifer parameters

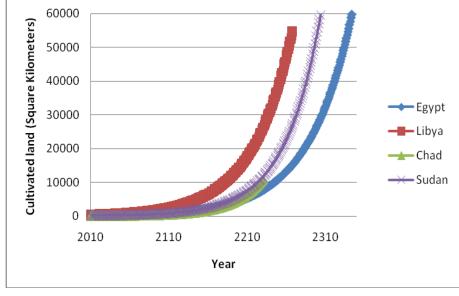
- The Inverse Problem.
- The Generalized parameterization method (GP)(Tsai and Yeh 2004, Tsai 2004) could be used to identify a certain parameter's heterogeneity as follows:


$$p_{\mathit{GP}} = \sum\nolimits_{j=1,\,j\neq k} \beta_j \phi_j p_j + \left(1 - \sum\nolimits_{j=1,\,j\neq k} \beta_j \phi_j p_j\right) p_k$$

Non-Renewable Groundwater

- The development of a nonrenewable groundwater resource involves the extraction of the fossil groundwater in a process that is usually referred to as "Groundwater Mining".
- The sustainable development of a depletable resource refers to prolonging the use of such resource as much as possible by applying relevant management tools and measures.

A Vision for the Future (NSAS)



NSAS: Scenario development

Scenario	Theme	Beginning Year	End Year	Sustainability (Years)
1	Reaching up to WPI	2008	2068	60
2	Agricultural Resettlement	2008	2074	66
3	Industrial Resettlement	2008	2127	119
4	Aquifer Recharge	2008	2150	142

NSAS: Transboundary Scenario: Target Population

NSAS: Transboundary Cooperation

- The four countries sharing the NSAS adopted a regional information network.
- Monitoring is continued through two agreements.
- A regional model and thematic maps have been developed.

Conclusion

A comprehensive Dialogue is the only way to come up with a satisfactory international document for Transboundary Groundwater

Thanks

e-mail: melrawady@cedare.int

Website: Water.cedare.int

